Let $n\geq 2$,prove that $(n+1)!+k$ is composite for $k=2,\cdots,n+1$.This shows that there exists arbitrarily long intervals of composite numbers.
Proof:Simple.本文共 230 字,大约阅读时间需要 1 分钟。
Let $n\geq 2$,prove that $(n+1)!+k$ is composite for $k=2,\cdots,n+1$.This shows that there exists arbitrarily long intervals of composite numbers.
Proof:Simple.转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/29/3827616.html